

... for a brighter future

A U.S. Department of Energy laboratory managed by The University of Chicago

ERL Gradient and Phase Tolerance Calculations

2007 Energy Recovery Linac Workshop Daresbury Laboratory, UK: SRF-WG3

Nick Sereno

Operations and Analysis Group Accelerator Systems Division Argonne National Laboratory May 23, 2007

Outline

- Motivation
- Advanced Photon Source (APS) ERL concept
- Calculations
 - First pass (user) beam energy error and spread
 - First pass beam gradient and phase tolerances
 - Energy recovered (second pass) beam energy error and spread
 - Energy recovered beam effective energy spread based on first pass gradient and phase error tolerances
- Conclusion

Motivation

- APS has users that need X-rays up to as high as 100 keV
- Energy spread impact on brightness of undulator X-rays in higher harmonics above 10 keV is large
- ERL has potentially a factor of 5 smaller energy spread (0.02%) than the APS storage ring (0.096%) @ 7 GeV
- However, random energy jitter due to gradient and phase jitter in the cavities increases the effective energy spread
 - Gradient and phase feedback loops have a finite bandwidth
 - Left over cavity gradient and phase fluctuations will add in quadrature to the natural energy spread
- How much is the effective beam energy spread increased due to uncorrectable gradient and phase fluctuations?
 - User beam
 - Energy recovered beam

On-Axis Brilliance Tuning Curves for APS ERL with Artificially Changed Beam Energy Spread and Horizontal Divergence¹

For the ERL, increased beam energy spread and horizontal divergence each decreases brilliance ~3x at high energies and recovers the shape of the APS 3.3-cm-period undulator tuning curve.

Beam Energy 7.0 GeV
Beam Current 100 mA (APS), 25 mA (ERL)
Beam Energy Spread 0.096% (APS), 0.020% (ERL)

¹Courtesy Roger Dejus APS.

Ultimate APS ERL Upgrade Concept¹

- Single-pass 7 GeV linac points away from APS to permit straight-ahead hard x-ray short-pulse facility^{2,3}
- Beam goes first into new, emittancepreserving turn-around/user arc⁴
 - Second-stage upgrade would add many new beamlines
- ERL can benefit from very long undulators⁵
 - Higher flux and brightness
 - Could add these using somewhat different geometry
- Ability to store beam unchanged¹
- Existing injector complex unchanged.
- ¹G. Decker,OAG-TN-2006-058, 9/30/06.
- ²M. Borland, "ERL Upgrade Options and Possible Performance," 9/18/06.
- ³M. Borland, "Can APS Compete with the Next Generation?", May 2002.
- ⁴M. Borland, OAG-TN-2006-031, 8/16/06.
- ⁵S. Gruner et al., "Synchrotron Radiation Sources for the Future," 11/30/200.

¹ Slide courtesy of M. Borland APS.

Outline of Calculations

- Define the "energy error" for first pass (user) and energy recovered beams due to random gradient and phase errors
- Define a relative energy error at a specific beam energy in terms of the energy error
- Assume gaussian (normal) error distributions for gradient and phase errors
- Derive an analytic formulas for the relative energy error
- Compare the accuracy of these formulas to a "montecarlo" calculation of the relative energy error
- Define the effective energy spread in terms of the natural energy spread and relative energy error
- Use the analytic formula to evaluate gradient and phase error impact on the effective energy spread of user and energy recovered beams

User (First Pass) Beam Analytic Formula Derivation

User (first pass) beam energy error for an N cavity linac:

$$\Delta E = E_{tot} - E_f = \sum_{n=1}^{N} (V_o + \Delta V_n) \cos(\phi_o + \Delta \phi_n) - NV_o \cos\phi_o$$

$$E_f = E_o + NV_o \cos\phi_o$$

Definition of the "relative" energy error (squared):

$$\sigma_{\left(\frac{\Delta E}{E_f}\right)}^2 \equiv \frac{\langle (\Delta E - \langle \Delta E \rangle)^2 \rangle}{E_f^2} = \frac{\langle \Delta E^2 \rangle - \langle \Delta E \rangle^2}{E_f^2}$$

Evaluate sums over N cavities using the approximation:

$$\langle f(x)\rangle \approx \frac{1}{N} \sum_{n=1}^{N} f(x_n) \approx \frac{1}{\sqrt{2\pi\sigma_x}} \int_{-\infty}^{\infty} e^{-x^2/(2\sigma_x^2)} f(x) dx$$

User (First Pass) Beam Analytic Formula Derivation cont.

- Relative energy error for the first pass beam:
 - σ_{AV} is the absolute gradient error
 - σ_{Λ_0} is the absolute phase error

$$\sigma_{\left(\frac{\Delta E}{E_{f}}\right)}^{2} = \frac{1 + \cos 2\phi_{o} e^{-2\sigma_{\Delta\phi}^{2}}}{2N\cos^{2}\phi_{o}} \left(\frac{\sigma_{\Delta V}}{V_{o}}\right)^{2} + \frac{(1 - e^{-\sigma_{\Delta\phi}^{2}})(1 - \cos 2\phi_{o} e^{-\sigma_{\Delta\phi}^{2}})}{2N\cos^{2}\phi_{o}}$$

- Effect of gradient and phase errors decreases for long linacs
- Phase errors much less important than gradient errors for oncrest phasing ($\phi_0 = 0$)
- How accurate is the formula compared to direct calculation of the relative energy error?
 - Calculate via monte-carlo the relative energy error
 - Fit a line to the relative energy error squared vs relative gradient error squared

Monte-carlo calculation overview

- Calculate for a linac consisting of:
 - -N = 350 cavities (~ 650 m long)
 - _ Cavity gradient $V_{g} = 20 \text{ MV/m}$
 - 1 m long cavities
- Generate 100k "linacs" to compute statistics required for the relative energy error
 - Evaluate $\langle \Delta E \rangle$ and $\langle \Delta E^2 \rangle$ statistics directly
 - Evaluate the statistics from a histogram of the energy error
- Vary gradient and phase error standard deviations over a specified range
- Repeat for two different off-crest phase angles
- Fit a line to the data
- Compare the slope and intercept of the line to formula
- Use computing cluster resources managed by APS (>180 processors in two clusters)

User Beam Energy Slope and Intercept Comparison

User Beam Energy Slope and Intercept Comparison cont.

Effective energy spread

Definition of the effective energy spread:

$$\sigma_{eff}^2 = \sigma_{\delta}^2 + \sigma_{\left(\frac{\Delta E}{E_f}\right)}^2$$

Natural energy spread for user beam (@ 7 GeV) from simulation¹:

$$\sigma_{\delta} = 0.0181\%$$

Compute gradient and phase error contours for constant effective energy spread some fraction f above the natural energy spread:

$$\sigma_{eff} = (1+f)\sigma_{\delta}$$

¹M. Borland, Comparison of ERL Options and Greenfield ERL. Talk given to the Machine Advisory Committee for the technical review of APS Upgrade Options, November 2006.

Constant effective energy spread contours for user beam on-crest

¹G. Krafft etal, Measuring and Controlling Energy Spread in CEBAF

³ L. Merminga these proceedings

² L. Merminga etal, Operation of the CEBAF Linac with High Beam Loading

Comparison of effective energy spread contours for three off-crest phase angles

Energy Recovered Beam Analytic Formula Derivation

Derivation proceeds similarly to that for user beam:

$$\Delta E = \sum_{n=1}^{N} (V_o + \Delta V_n^{(1)}) \cos(\phi_o^{(1)} + \Delta \phi_n^{(1)})$$

$$-\sum_{n=1}^{N} (V_o + \Delta V_n^{(2)}) \cos(\phi_o^{(2)} + \Delta \phi_n^{(2)}) - E_{sy}$$

$$\sigma_{\left(\frac{\Delta E}{E_f}\right)}^2 = \frac{\langle (\Delta E - \langle \Delta E \rangle)^2 \rangle}{E_f^2} = \frac{\langle \Delta E^2 \rangle - \langle \Delta E^2 \rangle}{E_f^2}$$

$$E_f = E_o = 10 \text{ MeV}$$

$$E_{sy} = 15 \text{ MeV}$$

First and second (energy recovered) beam nominal phases depend on the synchrotron radiation energy loss:

$$\cos \phi_o^{(2)} = \cos \phi_o^{(1)} - \frac{E_{sy}}{NV_o} = 1 - \frac{E_{sy}}{NV_o}$$

Energy Recovered Beam Analytic Formula Derivation cont.

Formula for the relative energy error has the same form as that for the user beam:

$$\sigma_{\left(\frac{\Delta E}{E_{f}}\right)}^{2} = \frac{N}{2} \left(2 + (\cos 2\phi_{o}^{(1)} + \cos 2\phi_{o}^{(2)})e^{-2\sigma_{\Delta\phi}^{2}}\right) \left(\frac{\sigma_{\Delta V}}{V_{o}}\right)^{2} + \frac{NV_{o}^{2}}{2E_{o}^{2}} \left(1 - e^{-\sigma_{\Delta\phi}^{2}}\right) \left(2 - (\cos 2\phi_{o}^{(1)} + \cos 2\phi_{o}^{(2)})e^{-\sigma_{\Delta\phi}^{2}}\right)$$

- Relative energy error depends linearly on N in this case
- Note gradient and phase errors for each pass come from the same gaussian error distribution:

$$\sigma_{_{\Delta\phi^{^{(1)}}}}\!\!=\!\sigma_{_{\Delta\phi^{^{(2)}}}}\!\!=\!\sigma_{_{\Delta\phi}}$$

$$\sigma_{_{\Delta V^{(1)}}} = \sigma_{_{\Delta V^{(2)}}} = \sigma_{_{\Delta V}}$$

Energy Recovered Beam Analytic Formula Derivation cont.

- Check this formula in a similar fashion using montecarlo
 - Evaluate the statistics $\langle \Delta E \rangle$ and $\langle \Delta E^2 \rangle$ directly
 - Evaluate the statistics from a histogram of the energy error
 - Compute slope and intercept for best fit curve as with user beam analysis
 - Use same linac parameters used for first pass beam calculation
 - Use natural energy spread from full, start-to-end elegant tracking simulation¹
- Evaluate relative energy error over user beam gradient and phase error range

¹M. Borland, Comparison of ERL Options and Greenfield ERL. Talk given to the Machine Advisory Committee for the technical review of APS Upgrade Options, November 2006.

Energy Recovered Beam Slope and Intercept Comparison

Energy Recovered Beam Effective Energy Spread Calculation

Contours For the Energy Recovered Beam 0.25 O a(eff) (%) 0.20 20 5 l1 O 0.05 0.00 2.5 1.5 2.0 $\sigma_{\Delta \varphi}$ (Degrees) 6.8 % @ 10 MeV

Conclusion

- Gradient and phase error tolerances for user beam modest to keep effective energy spread < 15 % increase above natural energy spread
 - $\sigma_{\Lambda \phi}$ < 2 degrees for phase errors
 - $_{-}$ $\sigma_{_{\Lambda V}}$ < 0.2 % for gradient errors (40 kV out of 20 MV)
- These error tolerances imply ~12 % effective energy spread for the energy recovered beam
 - Desire low losses at the beam dump
 - May impact beam dump design
- How do uncorrectable gradient and phase errors scale to 100 mA?
- Analytic formulas pushed about as far as they can go
- Easily modify the monte-carlo calculations to include more complicated gradient/phase error distributions in the linac
 - Systematic nominal gradient and phase (V_o and ϕ_o) errors
 - Model gradient and phase feedback loop action vs beam current
 - Effect of injector beam
- Useful to compare with tracking simulation using elegant

